Fazer login no IT Mídia Redefinir senha
Bem-vindo de volta,
Digite seu e-mail e clique em enviar
Ainda não tem uma conta? Cadastre-se
Salvar em Nova pasta de favoritos

+

Criar pasta
Salvar Escolher Pasta
8 segredos de projetos de Inteligência Artificial de sucesso
Home > Tendências

8 segredos de projetos de Inteligência Artificial de sucesso

IA é uma grande promessa de negócios, mas é preciso mais do que um modelo de trabalho para criar mudanças escaláveis e transformadoras

Maria Korolov, CIO (EUA)

04/06/2021 às 10h43

ia, inteligência artificial
Foto: Adobe Stock

Os líderes de negócios em todos os níveis veem o valor de usar inteligência artificial, mas usar bem a IA é onde reside o verdadeiro valor.

E as apostas são altas. De acordo com uma pesquisa da Deloitte divulgada no verão passado, 61% das empresas esperam que a IA transforme sua indústria nos próximos três anos. Empresas com líderes eficazes, um alto nível de comprometimento com projetos de IA e uma visão e estratégia de IA claras estão posicionadas para se beneficiar ao máximo com essa mudança, de acordo com uma pesquisa da McKinsey divulgada em novembro passado.

O principal diferenciador? Ser capaz de implantar IA em escala. Em vez de provas de conceito, ou projetos únicos de IA, as empresas que sairão por cima são aquelas capazes de implantar vários aplicativos de IA em várias equipes. Até agora, apenas 13% das organizações foram capazes de fazer isso, de acordo com o relatório de estado da IA ​​de 2020 da Capgemini.

Aqui estão oito dicas para transformar projetos de inteligência artificial em valor comercial, contadas por aqueles que já estão obtendo benefícios reais da IA.

Foco na transformação do negócio

Três anos atrás, quando a General Electric estava nos estágios iniciais de sua jornada de IA, os projetos de IA exigiam um foco agudo em benefícios comerciais específicos, começando com projetos viáveis ​​mínimos. Hoje, a história é mais sobre o uso de IA como parte de uma transformação do próprio negócio.

“Você pode examinar um minúsculo silo, otimizar a quantidade de estoque que você economiza e economizar US$ 2 ou US$ 3 milhões, mas isso não se traduz em criação de valor em toda a empresa”, disse Colin Parris, Vice-Presidente Sênior de CTO da GE, apontando para um exemplo em que a GE descobriu como gerenciar os estoques de peças de forma mais eficiente com IA. O próximo passo foi pegar o que a GE aprendeu e oferecer o mesmo serviço a seus clientes.

“Posso fazer a previsão - ou fornecer o software e você pode usá-lo - para que você saiba quais peças comprar”, diz ele. “Então, passei da eficiência para a geração de receita em meu setor. E então posso abrir meu mercado e as mesmas técnicas podem ser aplicadas a outras indústrias”.

Mas o salto do uso de IA para cortar custos, para o uso de IA para crescer os negócios requer uma mudança fundamental na estratégia para focar na transformação dos negócios. Na GE, isso significou alavancar os princípios de manufatura enxuta, movidos por IA. Uma vantagem de emparelhar IA com lean é que ele reduz a resistência interna à mudança.

“Há anos que fazemos manufatura enxuta”, diz Parris. “As pessoas sabem que seu trabalho não está acabando”.

Conheça os limites da IA

À medida que os projetos de IA aumentam e se tornam operações centrais da empresa, os riscos associados também aumentam. Se um sistema de IA treinado em um problema específico for então aplicado a um problema ligeiramente diferente, os resultados podem ser abaixo do ideal - ou até mesmo perigosos.

“Temos uma coisa chamada IA ​​humilde”, diz Parris. “Se as coisas mudarem, eu não uso o modelo de IA. Volto para o modelo que tinha antes. Humilde sabe quando deve se afastar. Isso limita o risco do seu negócio. E aumenta a adoção”.

Outro aspecto da abordagem de "IA humilde" da GE é garantir que a IA explique seu raciocínio. Por exemplo, quando os técnicos obtêm dados de turbinas eólicas, eles tradicionalmente procuram velocidade do vento versus vibração da torre no manual, e o manual diz a eles o que fazer. Um sistema de IA, no entanto, pode obter os dados, traçar as curvas e relatar ao técnico que a turbina está passando por um problema de rolamento de inclinação. A IA explicável também mostraria essas curvas para o técnico e puxaria a página do manual que contém as informações relevantes.

“A IA agora está se explicando”, diz Parris. “E o técnico poderia olhar para ele e dizer:‘ Isso parece um pouco diferente. Ou eles poderiam dizer: 'Isso é exatamente certo. Vamos fazer isso'"

A IA ajuda o técnico a chegar à solução mais rapidamente - e ajuda o técnico a acreditar que ela realmente funciona.

“É sobre inteligência aumentada, inteligência assistida”, diz Parris. “Não está substituindo você; está ajudando você”. Isso está ajudando na adoção de IA em escala, acrescenta ele

Ouça as partes interessadas - e clientes

Para algumas empresas, garantir que os sistemas de IA produzam resultados úteis requer ajuda além da equipe central de IA. Como qualquer projeto, isso começa com a coleta de requisitos em torno de dados, resultados e modelos.

“Idealmente, você inicia um projeto com uma reunião de quadro branco, onde todos os principais interessados ​​passam a tarde analisando os detalhes e documentando os requisitos de consulta”, diz Jim Metcalf, Cientista-Chefe de Dados do Healthy Nevada Project, cuja equipe aprendeu esta lição trabalhando um protocolo para lidar com pacientes cardíacos.

O projeto exigia a coleta de informações sobre os medicamentos prescritos aos pacientes na alta hospitalar. Mas alguns medicamentos, como as estatinas, são prescritos quando os pacientes são admitidos pela primeira vez e continuados quando o paciente sai. O sistema presumiu que esses medicamentos eram prescrições contínuas que os pacientes já estavam tomando, e não novos medicamentos relacionados a suas hospitalizações por ataque cardíaco, um problema que foi descoberto apenas quando a contagem de medicamentos acabou ficando abaixo do esperado.

“A equipe poderia ter resolvido isso muito mais cedo se tivéssemos discussões mais detalhadas com todas as partes interessadas desde o início”, diz Metcalf. “Nossa equipe de ciência de dados aprendeu a não presumir nada. Examinamos, discutimos e documentamos exaustivamente os requisitos de consulta muito antes de alguém colocar o dedo no teclado”.

Para o provedor de plataforma de gerenciamento de gastos corporativos Coupa, uma dica do cliente apontou o caminho para uma nova maneira de detectar fraudes. “Em nosso setor, a abordagem tem sido olhar para as fraudes de gastos em silos”, diz Donna Wilczek, Vice-Presidente de Estratégia de Produto e Inovação da empresa.

Mas acontece que um funcionário trapaceando em uma área tem maior probabilidade de trapacear também em outras áreas, diz ela. Foram necessárias conversas com especialistas em aquisições e auditores financeiros para descobrir que o segredo da detecção de fraude é olhar para as pessoas que estão no centro da fraude.

Coupa agora coleta exemplos de comportamento fraudulento que as empresas relatam e, em seguida, adiciona esses exemplos da vida real ao sistema de IA.

Sem mais provas de conceito

Quando a tecnologia era totalmente nova, as provas de conceito (POCs) faziam sentido. Hoje, no entanto, há menos necessidade de iniciar sua jornada de IA com experimentos, diz JJ López Murphy, Diretor de Dados e Tecnologia de IA da Globant.

“Cada um desses experimentos é muito caro, em termos de dinheiro, tempo e influência política”, diz ele. “Depois de fazer quatro POCs que não levam a lugar nenhum, as pessoas param de acreditar na IA”.

Em vez disso, as empresas deveriam trabalhar em projetos que vão para algum lugar, diz ele. “Se não estiver em produção, se não estiver sendo usado, às vezes é pior do que inútil”.

Whit Andrews, Analista do Gartner, concorda, recomendando que as empresas criem produtos mínimos viáveis. “O risco é um pouco maior”, diz ele. “Mas o benefício é que você começa a andar. Agora você simplesmente continua adicionando capacidade e funcionalidade”.

De acordo com uma pesquisa de 2020 do Gartner, as empresas bem-sucedidas com IA realizam uma média de 4,1 projetos-piloto. As empresas que não são bem-sucedidas realizam 5,2 POCs. “Já passamos do ponto de ‘jogar contra a parede e ver o que gruda’”, diz ele.

Times mistos

De acordo com o relatório do Gartner, as organizações que obtiveram “valor significativo” de seus projetos de IA também tiveram 14% mais funções em suas equipes de IA, incluindo gerentes de projeto, estrategistas e pessoas com experiências e perspectivas diferentes.

“O hábito número 1 das empresas de sucesso é usar equipes bem misturadas”, diz Andrews.

Para um projeto de IA em que a Tech Data trabalhou que envolvia a contagem de papagaios-do-mar, isso significava trazer especialistas em hardware.

“Se você já viu especiais da National Geographic, os papagaios-do-mar estão amontoados juntos, milhares deles”, diz Clay Davis, Vice-Presidente para Dados Globais e Soluções de IoT, da Tech Data. “Fomos encarregados de aproveitar a IA para contar os papagaios-do-mar”.

Antes de a Tech Data ser chamada para ajudar no projeto, havia uma equipe de cientistas de dados trabalhando para obter os melhores modelos possíveis para a contagem de papagaios-do-mar, e uma equipe separada de profissionais de hardware escolhendo as câmeras e o equipamento de computação.

“Quando você tem um hardware físico como uma câmera que captura imagens, muitas vezes em áreas remotas, às vezes é mais eficaz fazer o cálculo no local, às vezes não”, diz ele. “E se você faz cálculos no local, precisa ter certeza de que o hardware que está aproveitando é suficiente para lidar com os modelos que você construiu com os cientistas de dados”.

Três meses depois, descobriu-se que o hardware escolhido não podia executar os modelos que os cientistas de dados estavam criando. “Agora você precisa reiniciar”, diz ele. “Ou você precisa comprar um novo hardware ou pedir aos cientistas de dados que construam um modelo mais eficiente. Você precisava ter as duas pessoas no projeto desde o primeiro dia”.

No caso dos incontáveis ​​papagaios-do-mar, os cientistas de dados puderam mudar para um modelo de mapeamento de tendências, para que pudessem ficar com o hardware existente.

Abrace experiência de domínio

Contar apenas com cientistas de dados para descobrir insights de dados é um grande erro, diz Halim Abbas, Diretor de IA da Cognoa, que está aplicando IA para diagnósticos comportamentais, ajudando a identificar crianças com autismo e outros problemas de saúde comportamental.

Determinar as interdependências e a relevância dos dados geralmente requer um especialista no assunto. Por exemplo, se um conjunto de pacientes diagnosticados em uma sala com paredes azuis e outro em uma sala com paredes brancas produziu resultados diferentes, um modelo analítico em busca de padrões pode deduzir que a pintura da parede tem significado clínico.

“À medida que o tamanho do conjunto de dados aumenta, você obviamente evitará essas conclusões tolas”, diz Abbas. "Mas ainda pode haver alguns sutis".

Esses são problemas dos quais um especialista em IA sem experiência no domínio não estaria ciente, acrescenta. Isso é especialmente crítico quando os conjuntos de dados são pequenos, como em condições raras ou dados demográficos pequenos.

Mas os especialistas em domínio podem ter seus próprios preconceitos, diz Abbas. “Uma boa maneira de ter certeza dupla é receber a opinião dos especialistas do domínio e fazer o mesmo no lado da IA, e trabalhar apenas com o que é duplamente validado, em ambos os lados da equação”.

Combinar experiência de domínio com IA pode ser essencial na curadoria de dados, como descobriu a CAS, uma empresa de 111 anos que coleta e publica dados de pesquisa química.

“Coisas como espaços, subscritos, travessões ou a mudança de uma única letra em uma estrutura química podem fazer a diferença entre uma reação segura e explosiva”, diz o CTO Venki Rao. “Temos mais de 350 PhDs em nossas instalações, organizando dados”.

Recentemente, a empresa começou a usar IA para ajudar a categorizar e curar os dados, liberando alguns desses PhDs para trabalhos mais complexos. Mas é preciso experiência de domínio até mesmo para construir um sistema simples de reconhecimento óptico de caracteres.

“Se você é um tecnólogo puro, não pode ser produtivo para nós no primeiro dia”, diz ele. “Se você usar força bruta com a tecnologia, sem entender a química, nunca será o ideal”.

Perceba o valor dos testes do mundo real

Nenhum plano de batalha sobrevive ao contato com o inimigo - e nenhum sistema de IA sobrevive ao contato com o mundo real. Se sua empresa não está preparada para esse fato, seu projeto de IA está condenado antes de começar.

Jennifer Hewit, Chefe de Serviços Cognitivos e Digitais do Credit Suisse Group, enfrentou esse desafio de frente. Quando a empresa de serviços financeiros lançou seu primeiro chatbot de suporte ao cliente - Amelia -, Hewit sabia que muitas vezes Amelia desistia e enviava clientes a agentes humanos, em vez de ser capaz de responder à maioria das perguntas por conta própria.

“Tomei a decisão de ir ao vivo logo no início”, diz ela, quando a capacidade do chatbot de entender a intenção era de apenas 23%. Mas por estar em cenários do mundo real, o chatbot foi capaz de observar conversas multiculturais, multilíngues e de várias gerações e aprender com elas.

“Colocar no ar rapidamente e expor a capacidade para a organização significou que fomos capazes de aumentar sua capacidade de entender a intenção de 23% para 86% em cinco meses”, diz ela.

Ter um propósito maior

À medida que as empresas competem por escassos talentos de IA, ter projetos significativos pode fazer uma grande diferença. Na Envision Virgin Racing, por exemplo, o objetivo de usar IA não é apenas economizar alguns segundos em uma corrida de carros elétricos de Fórmula E. “Estamos avançando no setor”, afirma Sylvain Filippi, Diretor Administrativo e CTO.

“Todos os softwares e tecnologias estão fluindo quase diretamente das corridas para os carros premium de ponta e depois para os carros de rua”, diz ele. “É muito mais motivador quando sabemos que esta tecnologia vai realmente acelerar a transição para os carros elétricos”.

A próxima geração de carros elétricos começará a correr em 2023, diz ele, ampliando os limites em tecnologia de bateria e carregamento rápido.

“O carregamento rápido, em combinação com baterias de alta densidade, ajudará a permitir uma transição fácil para carros elétricos”, diz ele. “Não daqui a dez anos, mas daqui a dois ou três anos. Para o consumidor, uma vez que você tem um carro que tem um alcance de aproximadamente 300 milhas e carregamento super rápido, o jogo termina para a combustão interna”.

Hoje, o carro do consumidor médio cobra cerca de 50 ou 100 quilowatts, diz ele, e uma carga de 80% leva cerca de 40 minutos. Ir além do que a Tesla está fazendo atualmente com 200 quilowatts fará uma grande diferença em viagens mais longas, diz ele. “A ideia é chegar a 300. Aos 300, você tem 15 minutos para carregar. Em 600, leva menos de 10 minutos”.

A Envision Virgin Racing também espera mostrar que correr carros em alta tensão é seguro.

“A quantidade de abusos que aplicamos aos carros é real. As pessoas podem assistir e dizer: ‘Que legal, se esses carros podem fazer isso, eu também posso’”, diz ele. “Se pudermos tornar esses carros confiáveis ​​para uma temporada inteira de abusos como essa, um carro de estrada estará na estrada para sempre. É um campo de testes confiável - como costumava ser o automobilismo”.

E a IA está no centro disso. “Temos engenheiros de corrida, engenheiros de sistemas e também um grupo de engenheiros de software, o que é novo nos esportes motorizados”, diz ele. “Por ser um carro elétrico, há muito desempenho derivado de software. Os carros são os mesmos no início e no final da temporada, mas o software mudou seis vezes e o carro está visivelmente mais rápido”.

Felizmente, há muitos dados para as equipes de IA usarem, já que os carros elétricos estão cheios de sensores, coletando grandes quantidades de dados altamente estruturados. “Para cientistas de dados, é um playground fantástico para aplicar seus recursos”, diz ele.

A Envision Virgin Racing trabalha com a Genpact, uma empresa de consultoria, para os modelos e ferramentas de ciência de dados. Sua empresa controladora, a Envision, é uma empresa de energia alternativa que começou com turbinas eólicas e, desde então, entrou em software para melhorar a eficiência da rede de energia. E como proprietária do quinto maior fabricante de baterias do mundo, a Envision está muito interessada em levar a tecnologia ao seu limite, diz Filippi.

“Há muitos aprendizados importantes aqui”, diz ele.

Vai um cookie?

A CIO usa cookies para personalizar conteúdo e anúncios, para melhorar sua experiência em nosso site. Ao continuar, você aceitará o uso. Para mais detalhes veja nossa Política de Privacidade.

Este anúncio desaparecerá em:

Fechar anúncio

15